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Task-Aware Active Learning for Endoscopic
Polyp Segmentation

Shrawan Kumar Thapa, Pranav Poudel, Sudarshan Regmi, Binod Bhattarai, Danail Stoyanov Senior
Member, IEEE

Abstract— Semantic segmentation of polyps is one of
the most important research problems in endoscopic image
analysis. One of the main obstacles to researching such a
problem is the lack of annotated data. Endoscopic annota-
tions necessitate the specialist knowledge of expert endo-
scopists, and hence the difficulty of organizing arises along
with tremendous costs in time and budget. To address this
problem, we investigate an active learning paradigm to re-
duce the requirement of massive labeled training examples
by selecting the most discriminative and diverse unlabeled
examples for the task taken into consideration. To this
end, we propose a task-aware active learning pipeline that
considers not only the uncertainty that the current task
model exhibits for a given unlabelled example but also
the diversity in the composition of the acquired pool in
the feature space of the model. We compare our method
with the competitive baselines on two publicly available
polyps segmentation benchmark datasets. Both qualitative
and quantitative analysis show a significant improvement
in performance when sampling on the semantic space of
the model than image space, and also demonstrate comple-
mentary nature of using model uncertainty information. The
code and implementation details are available at: https:
//github.com/thetna/endo-active-learn

Index Terms— Active Learning, Computer Assisted Inter-
ventions, Endoscopic Image Analysis, Semantic Segmen-
tation, Surgical AI

I. INTRODUCTION

Polyp segmentation [1], [2] is a fundamental research
problem in endoscopic image analysis. Automated polyp seg-
mentation can help in the early diagnosis, detection, and
treatment of colorectal disease by supporting endoscopists
with computer-assisted detection and characterization systems.
Such capabilities are needed to advance the toolkit available
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Fig. 1. Few randomly sampled examples from Kvasir-SEG [4].

to endoscopists, enable standardization of adenoma detection
rates, and potentially link to future robotic systems and au-
tomation [3]. The effectiveness of deep networks in learning
the parameters for such tasks has already been demonstrated.
However, most solutions demand a large number of training
examples. Annotating such a large volume of endoscopic data
needs domain experts, which incurs an immense cost in time
and budget. Therefore, label-efficient methods are of utmost
importance.

Recently, to address the problem of annotated examples,
several self-supervised learning algorithms are proposed [5]
[6] [7] [8]. However, the performance of these approaches
depends upon the overlap of the pre-text task with the down-
stream task. As a consequence, it demands a careful design
of the pre-text task. Similarly, data augmentations with differ-
ent geometric transformations, such as flipping and rotation,
are another option to populate the training examples. These
approaches do not effectively add true distribution variability.
This is because the body organs such as Colons are tubular
and rationally invariant. Figure 1 shows some of the images of
the colons captured by the Endoscopes. Another viable option
to augment the training data set is by generating realistic
synthetic examples. Training large models such as Stable
Diffusion [9] or similar for the medical domain demands

https://github.com/thetna/endo-active-learn
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billions of annotated examples which is difficult to find.
Active Learning (AL) [10]–[12] has shown a lot of promise

to become a viable solution to sub-sample the datasets by
discarding redundant and less informative examples in com-
puter vision. In AL, we repeatedly acquire labels using an
acquisition function for a subset of an unlabeled set where
the label acquisition is constrained by budget. Its task is to
select the optimal subset of examples that enhance the model’s
performance when added to the training set. AL methods
are emerging gradually in Biomedical Image Analysis [13]–
[17]. NVIDIA’s open-source platform MONAI 1 has launched
an intelligent interactive data annotation tool called MONAI
Label. Workshop with the theme ”interpretable and label-
efficient learning” [18] was organized in conjunction with
MICCAI 2020. PathAL [19] and [20] are some of the recent
works on Active Learning for Histopathology Image Analysis.

In active learning studies, acquisition functions fall mostly
under three categories: 1. Uncertainty-based [21], [22], [23],
[24] 2. Distribution-based [11], [10], and 3. Combining Uncer-
tainty and distribution [20], [25]. Relying only on uncertainty
as a selection criterion helps us to choose the examples
from the region of the manifolds of the image where the
model is less confident. However, it can not avoid selecting
redundant images from the same manifold region, limiting the
diversity. The distribution-based approaches address this issue
by considering the selected samples’ diversity. However, it is
possible to miss the selection of difficult examples. So, the
best bet is to combine the best of both worlds. Yet another
difference that these two groups of method exhibits is that
uncertainty-based methods are aware of downstream tasks. In
contrast, the representative-based methods are task-agnostic.

Our contribution lies in developing a novel task-aware
method for selecting both diverse and difficult examples for a
downstream task and applying it to novel bio-medical image
analysis tasks. To this end, we employ Coreset [26] sampling
method on downstream task-aware feature space in our active
learning pipeline for endoscopic polyp segmentation. Previ-
ous work on active learning [10] relying on Coreset based
sampling was evaluated on classification problems. Unlike
previous work, we also combine the uncertainty-based method
to sample the unlabeled data. Our pipeline is as shown in
Figure 2. There are three main components in our pipeline:
a Learner (A), a Sampler (B), and an oracle (C). The learner
is responsible for learning the parameters for a downstream
task by using the examples whose labels are queried by the
Oracle. We approximate the learner by UNet [27] which is one
of the most widely used semantic segmentation networks for
medical image analysis. However, networks other than this can
also be employed without any difficulties. The sampler selects
the examples and feeds them to the oracle to query the labels.
As the data selected by the sampler directly influences the
learner’s performance, we argue the need for linkage between
these two components. Therefore, we project all the data on
the learner’s feature space and apply the K-Center Greedy
Algorithm similar to that in [10] to select the core-set examples
from the unlabeled dataset that comprises a fraction of the total

1https:monai.io

budget. This would help us to identify the diverse example
on downstream task’s feature space. Similarly, we acquire
predictions for unlabeled examples and calculate uncertainty
using the Best vs. Second Best Strategy (BvSB) [24], and
obtain top uncertain samples. This would make the remaining
fraction of the total budget. This approach helps us to focus
on difficult examples. The sum of examples from both these
approaches equals the total available budget. The trade-off is
adjusted by empirical validation.

We summarize our contributions in the following points:
• We proposed a novel task-aware Coreset-based selection

method in an active learning pipeline.
• We combine the Uncertainty based sampling technique

with the task-aware Coreset-based sampling technique.
• We compare the proposed method with multiple task-

agnostic approaches based on Coreset, and Variational
Autoencoder on challenging data sets for Endoscopic
polyp segmentation.

• We perform extensive quantitative and qualitative exper-
iments to validate our approach.

The remaining paper is organized as follows. Section II
covers some of the important works on active learning in
biomedical image analysis. We present our method in details
in Section III. Similarly, we discuss the experimental results
and conclusion in Section IV and VI, respectively.

II. RELATED WORKS

A. Endoscopic Polyp Segmentation
The limited size of medical datasets is a well-known

problem, and this hasn’t eluded polyps segmentation tasks.
ELKarazle, Khaled, et al. [28] have documented standard
polyps datasets in their survey. The Kvasir-SEG [4] and the
CVC-ClinicDB [29] used in this work have a total of 1000 and
612 annotated images, respectively. Similarly, the ETIS-Larib
[30] and the CVC-ColonDB [31] have a mere 196 and 300
annotated samples, respectively. EndoTect2 have 110k images,
but only a thousand come with segmentation masks, and most
of them are unlabeled. These examples show the difficulty
in acquiring a large volume of binary masks for localizing
the regions of polyps in endoscopic images. Several important
works have been published on polyps segmentation, such as
[32]–[35]. However, their focus has been primarily on archi-
tecture engineering. Works on sub-sampling the endoscopic
data set to reduce annotation costs have been missing, and
we believe our work provides a significant contribution in that
regard.

B. Active Learning in Biomedical Image Analysis
PathAL [19] is one of the recently published works on an

active learning framework for Histopathology image analysis.
This work relies on uncertainty to the downstream task as
a selection criterion. Examples with higher uncertainty are
chosen to query their labels. Whilst, the examples with the
lower uncertainty are assigned with the pseudo-labels pre-
dicted by the model of the task taken into consideration. This

2endotect.com
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method also ignores diversity and ends up selecting redundant
examples. Moreover, the examples on which the model is
already confident may not add extra information to the model.

Recent work in medical image segmentation [36] employs
the query-by-committee method to select the most informative
samples. Stein Variational Gradient Descent method trains an
ensemble of segmentation models. Then, an entropy-based
uncertainty estimate is used to get an informativeness score for
each unlabeled sample. The uncertainty estimate is combined
with mutual information between pairs of labeled and unla-
beled examples not to select the redundant examples. However,
the diversity is maintained from the uncertain examples. An-
other work in segmentation [37] uses the Best versus Second
Best Strategy to first select the most informative samples.
Then, a distribution discrepancy measure, that employs cosine
similarity between unlabeled and labeled sets, is used to select
representative subsets from the selected informative samples.
This method is yet another method to discard redundant exam-
ples from the most uncertain examples. From these methods,
we can understand the importance of the selection function
that gives diversity. However, the underlying idea of these
methods is based on the uncertainty of the model for the
downstream task. There is no explicit mechanism to identify
the essential subset of examples for a given task from the
whole data set. Hence, these methods also inherit the problem
of other uncertainty-based methods.

IDEAL [20] uses a saliency map of unlabeled examples
to train an auto-encoder to reconstruct the original map. The
latent bottleneck feature is then used to cluster the images into
k groups and train Random Forest Classifier online to rank
samples based on its informativeness to train this classifier
obtained using the AUC increment score from representative
samples from each of the k clusters. However, the bottleneck
features are not directly aware of the downstream task.

Yang et. al. [38] proposed an AL framework for gland
and lymph node segmentation based on class conditional
uncertainty as a criterion to select unlabelled data. The un-
certainty is calculated based on variances of predictions from
models trained using bootstrapping approach. Top K such
examples are selected and a subset with k < K examples,
which are the most representative of features in the unlabeled
set, is further sampled. Similarly, [39] uses a conditional
generative adversarial network to generate synthetic examples
and estimate the uncertainties to select data to query their
labels.

Most of the above-mentioned methods modify the model
training stages to induce biases of the active learning pipeline
to the task model itself. Those have been proven to be effective
as the works have shown, but the goal of this research is
to propose such an AL pipeline, which makes the optimal
utilization of information obtained from a model trained using
a generic training paradigm. To this end, our method is
inspired by the work of Shi et al. [25]. It presents an AL
framework for skin lesion detection aiming to select both
the difficult and the diverse examples. To this end, the paper
proposed to do hashing on the image features computed in
an unsupervised manner by applying Principal Component
Analysis (PCA) [40] and clustering the images into different

bins. Next, the paper proposed to sample the images from
each bin uniformly. It also samples uncertain examples like our
framework but uses the highest probability score of the classes.
The lower the probability of the most certain class, the more
uncertain the model is about the example. Nevertheless, the
features computed in an unsupervised manner are not aware of
the end task. Hence, the diverse examples on such sub-optimal
features for the end task may not necessarily be diverse for
the downstream task. Hence, we apply coreset [10] on latent
space (output from final layer) of the encoder and we use
BVSB strategy [24] as our uncertainty measure as the paper
shows its superiority over entropy-based uncertainty measure.

In summary, most existing methods are either distribution-
based or uncertainty based, and some use both. The problem
with the distribution-based approach is being unaware of the
end task, which makes the selection of data sub-optimal. Simi-
larly, the uncertainty-based method inherits the property of the
downstream task but fails to sample the diverse examples. Our
pipeline brings the advantages from both approaches making
the component of diversity task-aware.

III. METHOD

Active Learning is an iterative process to select a subset of
examples (Xs) from a large pool of unlabeled set (X) to query
their labels (Y ). We label the examples (x, y) ⊂ ( X × Y )
incrementally and add to a set of the labeled examples (X l).
The labeled examples are used to train a network minimizing
the objective of the end task (L). Equation (1) summarises the
Active Learning pipeline. Given any sampling function A, the
main goal of AL is to minimize the number of selection stages
n to reduce the number of examples for which labels need to
be queried.

min
n

min
L

A(L(x, y; θ)|Xs
0 ⊂ · · · ⊂Xs

n ⊂X). (1)

To begin with annotation, we select the first batch Xs
0 ran-

domly, where subscript 0 denotes the first selection stage and
superscript s indicates a selected set of examples to query their
labels. Once oracle queries their labels, we add those examples
to the pool of labeled examples X l = {Xs

0 U ∅}. These
labeled examples act as seed annotations to guide the next
selection stages. Fig. 2 depicts the proposed method. There
are three major components in the pipeline A) Learner, B)
Sampler, and C) Oracle. We discuss these in detail below.

A. Learner (A)

The role of a learner in the AL pipeline is to learn the
parameters for a downstream task from the labeled set of
examples. In our case, we are dealing with polyp segmentation.
Thus, we choose U-Net [27], a widely-used semantic seg-
mentation architecture for bio-medical image segmentation, to
implement the learner. Suppose x represents an image with its
corresponding ground-truth label y from labeled set X l. When
we feed in x to the model, the encoder projects the image
into a low-dimensional vector, z. And the decoder reconstructs
z back to the output ŷ, along with using different levels of



4 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

Fig. 2. This diagram shows the proposed Active Learning Pipeline. In this pipeline, (A) represents the model for the downstream task, also known
as Learner. In our case, it is a semantic segmentation network. Similarly, (B) represents the sampler. The sampler shares the parameters of the
learner, which makes our sampling technique task-aware. We extract the latent representations of the labelled and unlabelled data and employ
Coreset and BvSB to sample both the task-aware diverse and uncertain examples. The selected examples are sent off to query their labels (c). The
labelled examples and previously labelled data train the learner and re-iterate the process until the given budget.

features from the encoder. We minimize the objective given
in (2) to train the network.

L(y, ŷ) = LCE(y, ŷ) + Ldice(y, ŷ) (2)

Here, LCE is a binary cross-entropy loss [41] and Ldice is dice
loss [42]. Both are popular loss functions used in semantic
segmentation.
Once we learn the parameters of U-Net from the available
labeled examples, component B of the pipeline, the sampler,
comes into play.

B. Sampler (B)

1) Uncertainty Based Sampling: In this stage, we feed
unlabeled images to the model trained in the first stage and
obtain the respective segmentation mask. Then, we use the
BvSB method [24], which is one of the most competitive
baselines to select the informative examples, to compute the
uncertainty of the current model on given unlabeled images.
This method uses the difference between the highest and the
second-highest probability score predicted by the model. In the
segmentation task, for each pixel (i, j), where i ∈ H , j ∈ W ,
the model predicts a categorical distribution denoted by a
vector ŷ(i, j) ∈ [0, 1]C , where C is the total number of distinct

classes in the task. H and W are the height and the width
of the input image/segmentation mask respectively. Then, the
Best vs Second Best Score for each pixel is calculated as
follows:

BvSB(ŷ(i, j)) = 1− [ max
k∈ŷ(i,j)

ŷ(i, j)− max
l∈ŷ(i,j)\k

ŷ(i, j)] (3)

Lesser the difference in top-2 class prediction, the higher the
uncertainty of the example for the model. Since polyps seg-
mentation is a binary segmentation task, the score calculation
for each image can be simplified as shown in the following
equation:

BvSB(ŷ) = 1− 1

H ×W

H∑
i=1

W∑
j=1

[max(ŷ(i, j))−min(ŷ(i, j))]

(4)
We sample top Bu uncertain examples using the uncertainty
score given by (4). The uncertainty is estimated from the
predictions of the learner that models our downstream task;
thus making this component task-aware.

2) Task-Aware Core-set: Furthermore, we sample Bd di-
verse examples. We use the parameters of the encoder learned
in stage A to project both labeled and unlabeled images
into a latent space, Z. The procedure is carried out by first
getting the bottleneck feature from the encoder of dimension
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H/16×W/16×512. We, then, perform global average pooling
and flattening operations to get the latent image feature vector
z ∈ R512. Since we train the learner to minimize the objective
of the downstream task, the latent representations of the
images are optimized for the same. Next, we propose to select
a core-set [26] of the dataset based on this latent space to
query their labels. To compute the coreset, we employ the
K-Center-Greedy algorithm on this latent space as shown in
Algorithm 1.

Algorithm 1 k-Center-Greedy
Input: latent representation of data Z, existing pool s0 and

a budget b
Initialize s = s0

repeat
u = argmaxi∈[n]\s minj∈s ∆(zi, zj)
s = s ∪ {u}

until |s| = b+ |s0|
return s \ s0

∆(zi, zj) in algorithm 1 measures distance between two
latent features. We used euclidean distance as a distance
metric.

This selection process for diversity is also depicted visually
in the form of a graph in Fig. 2 block B (lower sub-block).
Each node in the graph represents an image, and the node’s
feature is initialized with the latent features extracted from the
learner’s encoder. Sky-blue nodes denote unlabeled examples,
red nodes denote the labeled examples, and green nodes denote
the examples selected to query their labels in the current
stage. After the completion of the selection process, selected
examples become a part of labeled examples. The edges
between the nodes represent the euclidean distances, where
the length is proportional to the magnitude of the distances.
Here, we create a territory of the nearest examples for each red
node and select the farthest node amongst these as illustrated
in the figure. Examples with the least euclidean distances
are likely to be duplicates of the selected ones and provide
redundant information to the downstream task. Hence, this
selection strategy helps us to obtain a subset of representative
examples of the dataset by discarding the redundant ones for
the end task. Since the core-set we obtain is aware of the
downstream task, we term our approach as Task-Aware Coreset
(TA-Coreset).

3) Combining TA-Coreset with Uncertainty: Here, Bu and
Bd are functions of γ such that Bu = γ ∗ B and Bd =
(1 − γ) ∗ B, where B is the total number of examples at a
selection stage. We obtain Xs from the union of uncertain
and diverse sets having Bu and Bd examples in each set
respectively. It should be noted that both sets are disjoint.
Indeed, it is done to show the complementary nature of these
methods. If in case, the same example(s) is selected by both
methods, the union of the two sets doesn’t result in a total of B
samples. In such cases, we continue the same sampling scheme
for the remaining number to be sampled from the budget.
Before proceeding to the next cycle, we add the selected
examples in the current cycle to the existing pool of labeled

examples. This iterative sampling process is summarized in
algorithm 2. More discussion of this is included in section V.

Algorithm 2 Combining TA-Coreset with Uncertainty
Input: latent representation of data Z, existing pool s0, unla-

belled set XU , a budget B, sampling ratio γ
Initialize s = ϕ
repeat

Bi = B − |s|
Bu = γ ∗Bi

Bd = (1− γ) ∗Bi

su = {Bu samples from XU using equation 4}
sd = {Bd samples from XU ∪ s0 using algorithm 1}
s = s ∪ sc ∪ sd
s0 = s0 ∪ s
XU = XU \ s0

until |s| = B
return s

C. Oracle (C)
We query the labels of the selected set, Xs from the Oracle.

After retrieving their label, the selected set is appended to the
labelled set (X l = X l∪Xs), and the selected set (Xs = ∅) is
emptied. This cycle is repeated till the budget limit is reached.

IV. EXPERIMENTS

This section presents the details of the experiments we
performed to validate our hypothesis. We start with a brief
description of the datasets, baselines, and evaluation methods,
followed by both quantitative and qualitative evaluations.

A. Datasets
We perform extensive experiments on Kvasir-SEG [4] and

Clinic-DB [29]. Fig. 3 shows a pair of randomly selected
images from each dataset. These are two important benchmark
datasets publicly available for polyp segmentation.

Kvasir-SEG consists of 1,000 colonoscopy images with
polyp masks. We used 900 of them for training and the rest
for validation. We reported our performance on a smaller test
dataset provided by the same project, identified as sessile-
Kvasir-SEG consisting of 196 images. Clinic-DB is a similar
dataset, but data points amounting only to 612 images. We
randomly selected 112 images as a test set and 100 from the
remaining 500 images as a validation set. The validation set
is used to select the best model during training. The model is
then evaluated on the respective test sets.

B. Baselines:
We compared our method with a wide range of competi-

tive baselines. They were selected to prove or disprove our
hypothesis. We hypothesized that the features need to be
task-aware, and uncertainty information is complementary for
further performance improvement.
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Fig. 3. Two upper images are from Kvasir-SEG, and the lower images
are from CVC-ClinicDB data set.

Random is the most commonly used technique to
sub-sample the training examples. We applied Principal
Component Analysis (PCA) [40], and compressed the
images to the dimension of 512, which is equal to that
of the latent representations in our method. We applied
Coreset [10] on PCA-compressed features, which we denote
as PCA-Coreset. Uncertainty [24] is another sampling
technique to find the most informative examples. Finally, we
compared our performance with VAAL [11], one of the most
popular task-agnostic active learning methods. Even though
our method is not task-agnostic, we made a comparison with
VAAL to shed light on the importance of task-aware active
learning. However, we have intentionally avoided comparing
our method to promising works such as PathAL [19] and
Diminishing Uncertainty [36] because these methods induce
biases of AL sampling process to task model training as well.
Our objective is not to make any interventions to task model
training, thus minimizing complexity. Additionally, we aim
to make the sampling process independent so that the already
trained model can also utilize the proposed data acquisition
process to improve its performance in a label-efficient way.

C. Evaluation metrics:
We report the performance on both data sets using the metric

of Intersection Over Union (mIOU) at different selection
stages. We ran the experiment five times and report its mean
and standard deviation.

IoU =
true positive

true positive + false positive + false negative

In addition to this, we present extensive qualitative analysis to
validate the proposed method.

D. Implementation Details:
We trained U-Net as our task model for polyps segmenta-

tion. U-Net is a popular and widely used deep architecture for

medical image segmentation. Since our method is modular,
any other architecture can be plugged easily into the pipeline.
Please note that our contribution is on engineering the data by
selecting the most discriminative examples. Thus, engineering
the semantic segmentation architecture is beyond the scope of
this work. We used Adam optimizer [43] (β1 = 0.9, β2 =
0.999) with a learning rate of 2×10−4. We trained the model
for 100 epochs in each cycle with a batch size of 8. We resized
the image into the dimension of 256×256. We then divided the
pixel values by 255 to get them in the range of 0-1, followed
by normalization with a mean and standard deviation of 0.5.

For AL experimentation, we initialized our labelled pool
with randomly selected 100 examples for Kvasir-SEG dataset,
simultaneously keeping the sampling budget size of 100. In
the case of Clinic-DB dataset, we initialized with randomly
selected 40 examples keeping the same sampling budget size.

E. Quantitative Evaluations

1) Kvasir-SEG:: Tables I and II summarise the perfor-
mance comparison on the Kvasir-SEG dataset with the base-
lines. The results are the mean and standard deviation of mean
IOU from five different trials with each trial initialized with
different seeds. Numerals representing each column indicate
the performance result from model trained with n labeled
examples. For example, 200 represents results from the model
trained by adding to the current labeled set the examples sam-
pled at the first selection stage by the respective AL pipeline.
We have excluded the performance of the models from the
first cycle of training (training set size of 100) since they were
trained by initializing using the same random samples. From
table I we can observe that using task-aware features to select
diverse examples helps improve performance from respective
task-independent counterparts. TA-Coreset outperforms other
baseline methods most of the time. Also, when it is compara-
tively underperforming in terms of mean performance across
five trials, it is still within the range of standard deviation of
the best-performing model at that stage. From the metrics, we
can also verify that using k-center algorithm on task-aware
features significantly boosts performance from using it on the
image space features extracted using PCA.

2) CVC-ClinicDB:: Tables III and IV summarise the per-
formance comparison on the CVC-ClincDB dataset with the
baselines. The results are the mean and standard deviation of
mean IOU from five different trials with each trial initialized
with different seeds. All the other conventions are similar to
that in section A. We have excluded the performance of the
model from the first cycle in this experiment as well following
the same reasoning. From table III, we can similarly observe
that task-aware features proved to be more significant than
the task-independent sampling, though, in this dataset, TA-
Coreset is competing closer to PCA-derived features, which is
a deviation from that on Kvasir.

3) Combining Uncertainty and TA-Coreset: Tuning γ: As
our method is based on diversity sampling, we performed
experiments on combining samples from the Uncertainty based
acquisition function and TA-Coreset. We uniformly sampled
the values of γ from 0 to 1, which corresponds to the fraction
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TABLE I
PERFORMANCE COMPARISON ON KVASIR-SEG DATASET: COMPARISON ON IMAGE FEATURES

Method Mean IOU

200 300 400 500 600

Random 68.14± 0.40 73.67± 0.58 77.48± 0.69 81.63± 0.86 85.61± 0.58

VAAL [11] 68.38± 0.46 73.58± 1.21 78.41± 1.06 81.82± 1.08 85.59± 0.52

PCA-Coreset 64.71± 1.02 70.20± 1.01 75.43± 0.95 78.48± 0.58 81.96± 0.56

TA-Coreset (ours) 67.99± 0.97 74.02± 1.13 78.28± 0.85 81.92± 1.08 86.89± 0.65

TABLE II
PERFORMANCE COMPARISON ON KVASIR-SEG DATASET: COMBINATION OF UNCERTAINTY AND IMAGE FEATURES

Method Mean IOU

200 300 400 500 600

Uncertainty [24] 66.69± 0.56 73.96± 0.75 81.08± 1.14 85.97± 0.57 89.03± 0.18

Uncertainty + 65.92± 0.53 71.73± 0.44 77.73± 0.78 83.46± 0.40 87.79± 0.41

PCA [25]

Uncertainty + 67.93± 0.53 75.35± 1.00 82.68± 0.80 85.40± 0.53 89.24± 0.41

TA-Coreset (ours)

TABLE III
PERFORMANCE COMPARISON ON CVC-CLINICDB DATASET: COMPARISON ON IMAGE FEATURES

Method Mean IOU

80 120 160 200 240

Random 78.92± 0.51 82.38± 0.35 84.83± 0.90 85.82± 0.41 86.77± 0.62

VAAL [11] 79.02± 0.92 82.42± 0.42 84.40± 0.73 85.21± 0.38 87.69± 0.29

PCA-Coreset 79.65± 0.69 83.67± 0.28 86.22± 0.29 87.47± 0.26 88.42± 0.29

TA-Coreset (Ours) 79.94± 0.29 84.33± 0.44 87.07± 0.40 88.14± 0.25 88.78± 0.16

TABLE IV
PERFORMANCE COMPARISON ON CVC-CLINICDB DATASET: COMBINATION OF UNCERTAINTY AND IMAGE FEATURES

Method Mean IOU

80 120 160 200 240

Uncertainty [24] 79.18± 0.36 84.01± 0.27 85.96± 0.29 87.93± 0.23 88.94± 0.30

Uncertainty + 80.25± 0.36 83.46± 0.45 87.05± 0.33 87.78± 0.23 88.98± 0.35

PCA [25]

Uncertainty + 79.33± 0.64 84.60± 0.40 87.12± 0.19 88.02± 0.28 88.61± 0.13

TA-Coreset (ours)

A) B) C)

Fig. 4. Examples sampled by Uncertainty+TA-Coreset method in third stage of selection which are A) also sampled by Uncertainty-based method,
but not Coreset B) also sampled by Coreset, but not Uncertainty-based method C) not sampled by both (unique to the combination)
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Random Sampling Stage-3

Unlabeled Labeled Selected

PCA-Coreset Sampling Stage-3

Unlabeled Labeled Selected

TA-Coreset Sampling Stage-3

Unlabeled Labeled Selected

Fig. 5. T-SNE plots showing the comparison of selection of unlabelled examples at the third selection stage on Kvasir-SEG. Left, middle, and right
plots show selection by Random, PCA-Coreset, and TA-Coreset, respectively (Zoom in for the better view).

Uncertainty Sampling Stage-3

Unlabeled Labeled Selected

TA-Coreset Sampling Stage-3

Unlabeled Labeled Selected

Uncertainty+TA-Coreset Sampling Stage-3

Unlabeled Labeled Selected

Fig. 6. T-SNE plots showing the comparison of selection of unlabelled examples at the third selection stage on Kvasir-SEG. Left, middle, and right
plots show selection by Uncertainty, TA-Coreset, and Uncertainty+TA-Coreset, respectively (Zoom in for the better view).

of uncertain examples to sample from the total budget. When
the value of γ = 0, this is equivalent to TA-Coreset, and when
γ = 1, this matches with Uncertainty. The ablation studies on
Kvasir-SEG [4] are shown in fig. 7 (left), and test results on
CVC-ClinicDB [29] is shown in fig.7 (right). For both datasets,
we observed the most optimal performance when γ = 0.5.
This also demonstrates that our method is complementary to
the existing uncertainty-based method.

Table II shows the effect of adding examples considering
the distribution of unlabeled images to the already selected
uncertain set. There is a boost in performance, especially in
earlier stages. The competitive performance in later stages is
because as the unlabeled pool starts shrinking, the number of
unique examples providing new information could also shrink.
Additionally, It should be noted that this approach isn’t only
complementary to uncertainty information but also provides
a significant boost over diverse sampling from image/feature
space (Table I and Table II). The metrics clearly show signifi-
cant improvement from both PCA and TA-Coreset, specifically
deviating in performance towards later stages.

In the case of combination in table IV, the performance

came out much tighter in this dataset with other baseline
methods. This could be explained by the much smaller set
we started with (a total of only 400 images as opposed to 900
in Kvasir) which is similar to the observation in later stages
of the Kvasir dataset.

V. QUALITATIVE EVALUATIONS

Fig. 4 illustrates several examples (Kvasir-SEG dataset)
sampled by each method in the third selection stage. Fig. 4A)
are common examples sampled by BvSB and combination but
not by coreset, 4B) are sampled by coreset and combination,
but not by BvSB, and 4C) are unique to combination only.
In fig. 5 and fig.6, we summarize the selection behaviour of
different sampling techniques in Kvasir-SEG data set with help
of the tSNE [44] plots. In the diagram, the green dots are
unlabeled examples, the red dots are labeled examples from
the previous selection stage, and the black dot represents the
examples selected in the current stage of annotation. The black
dots were green before selection. The unlabeled set has been
reduced using random sampling for clarity of the plot.
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Fig. 7. Performance study on different values of γ for combining Uncertainty and TA-Coreset (1−γ) on Kvasir (left) and CVC (right). When γ = 0,
it is equivalent to TA-Coreset. We uniformly vary the weight from 0.25 to 0.75. This graph shows that our method is complementary to Uncertainty
based Active Learning methods.

1) Task Aware vs Task Agnostic Features: Fig. 5 demon-
strates the importance of task-aware features for the selection
of an optimal set. From these plots, we can observe that
random (left) selects the examples uniformly throughout the
manifold. Similarly, PCA-coreset (middle) also covers the
whole manifold, though the selected examples are more spread
out than in random sampling. This shows the efficacy of Core-
set in sampling the unlabeled set considering the distribution
of input data. In contrast, TA-Coreset (right) concentrates on
certain regions of the image manifold. The selected examples
are more crowded in the upper and lower regions. The middle
region looks sparse as compared to the selection in the other
two methods. These observations depict that even though sam-
pling in task-agnostic image space looks representative of the
dataset, sampling in task-aware latent representation proved
to be more significant in terms of selecting for maximizing
model performance.
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Fig. 8. Median Number of Common Examples sampled by TA-Coreset
and Uncertainty at each stage of sampling

2) Importance of Combination: Fig. 6 demonstrates the
importance of combining uncertainty and diversity for the
selection of an optimal set. From these plots, we can see
that TA-Coreset (Middle) misses the uncertain/informative
example, as recognized by the uncertainty-based sampling
method (Left), from the lower-middle part of the image space.
When their sampling is combined (Right), we can see it covers

regions with both uncertain examples and diverse task-aware
features. This complementary nature is also recorded in fig. 8.
The figure shows the median number of common examples
sampled by the uncertainty-based method and TA-Coreset-
based method at each stage of the active learning cycle. Since
the budget was set to 100, and each method was asked to
sample 50% (γ = 0.5) of the budget, we can observe that only
a few examples are common selections from both methods.
Similarly, From simple perception in fig. 4, we can observe
that they are very different examples. This shows that our
method can sample examples identified by BvSB and Coreset
if they were used on their own without combination, and also
its distinct samples.

VI. CONCLUSIONS

In this paper, we present a novel task-aware active learn-
ing framework for endoscopic image analysis. We combined
diversity sampling on task-aware feature space with uncer-
tainty information from the task model. We employed the
proposed method on the polyp segmentation task and tested
it on two publicly available datasets. We observed a superior
performance from the extensive experiments compared to the
multiple competitive baselines, validating the hypothesis that
the feature required for sampling coreset of the dataset should
be task aware. Furthermore, we also noted that the addition
of model uncertainty information proved to be complementary
though the performance starts getting competitive with avail-
ability of a smaller pool of unlabeled set. Though the value of
γ was the same for both datasets in our experiments, it should
be noted that the hyperparameter was determined by tuning
the pipeline for each dataset. In future work, we will extend
our pipeline for multi-tasking framework in Endoscopic image
analysis.
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